Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
image
image
mask
images list
irm_in_vitro_microtubules_0
irm_in_vitro_microtubules_1
irm_in_vitro_microtubules_2
irm_in_vitro_microtubules_3
irm_in_vitro_microtubules_4
irm_in_vitro_microtubules_5
irm_in_vitro_microtubules_6
irm_in_vitro_microtubules_7
irm_in_vitro_microtubules_8
irm_in_vitro_microtubules_9
irm_in_vitro_microtubules_10
irm_in_vitro_microtubules_11
irm_in_vitro_microtubules_12
irm_in_vitro_microtubules_13
irm_in_vitro_microtubules_14
irm_in_vitro_microtubules_15
irm_in_vitro_microtubules_16
irm_in_vitro_microtubules_17
irm_in_vitro_microtubules_18
irm_in_vitro_microtubules_19
irm_in_vitro_microtubules_20
irm_in_vitro_microtubules_21
irm_in_vitro_microtubules_22
irm_in_vitro_microtubules_23
irm_in_vitro_microtubules_24
irm_in_vitro_microtubules_25
irm_in_vitro_microtubules_26
irm_in_vitro_microtubules_27
irm_in_vitro_microtubules_28
irm_in_vitro_microtubules_29
irm_in_vitro_microtubules_30
irm_in_vitro_microtubules_31
irm_in_vitro_microtubules_32
irm_in_vitro_microtubules_33
End of preview. Expand in Data Studio

HTW-KI-Werkstatt/IRM-in-vitro-microtubules

Real IRM Images of in vitro Microtubules

This dataset contains real interference reflection microscopy (IRM) images of in vitro microtubules. It is provided in the exact same format as the synthetic SynthMT dataset, enabling seamless switching between real and synthetic data for benchmarking and model development.

  • Data type: Real in vitro IRM images containing microtubules
  • Format: Identical structure and field names as SynthMT
  • Use case: Benchmarking segmentation models, domain adaptation, and biological analysis

Biological Context

Microtubules are cytoskeletal filaments essential for cell biology. IRM enables label-free imaging of microtubules in vitro, providing high-contrast images for quantitative analysis.

Dataset Structure

Each sample contains:

Field Type Description
id string Unique image identifier
image Image Real IRM image (PNG, can be loaded as (512, 512, 3))
mask Array3D Instance masks, same as SynthMT, i.e., with shape (C, 512, 512) and uint16 dtype, where C = number of instances in the image. Background pixels = 0.

The structure matches SynthMT, so you can switch the repo key in your code without changes.

Usage Example

Install the Hugging Face datasets library:

pip install datasets

Load the dataset (just change the repo key from SynthMT):

from datasets import load_dataset
import numpy as np

ds = load_dataset("HTW-KI-Werkstatt/IRM-in-vitro-microtubules", split="train")

sample = ds[0]
img_array = np.array(sample["image"].convert("RGB"))
mask_stack = np.stack([np.array(mask.convert("L")) for mask in sample["mask"]], axis=0)

Related Resources

License

CC-BY-4.0

πŸ“„ Citation

If you use this dataset, please cite:

@article{koddenbrock2026synthetic,
    author = {Koddenbrock, Mario and Westerhoff, Justus and Fachet, Dominik and Reber, Simone and Gers, Felix A. and Rodner, Erik},
    title = {Synthetic data enables human-grade microtubule analysis with foundation models for segmentation},
    elocation-id = {2026.01.09.698597},
    year = {2026},
    doi = {10.64898/2026.01.09.698597},
    publisher = {Cold Spring Harbor Laboratory},
    URL = {https://www.biorxiv.org/content/early/2026/01/12/2026.01.09.698597},
    eprint = {https://www.biorxiv.org/content/early/2026/01/12/2026.01.09.698597.full.pdf},
    journal = {bioRxiv}
}

🏷 License

CC-BY-4.0 - See LICENSE for details.


πŸ™ Acknowledgements

Our work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 528483508 - FIP 12. We would like to thank Dominik Fachet and Gil Henkin from the Reber lab for providing data, and also thank the further study participants Moritz Becker, Nathaniel Boateng, and Miguel Aguilar. The Reber lab thanks staff at the Advanced Medical Bioimaging Core Facility (CharitΓ©, Berlin) for imaging support and the Max Planck Society for funding. Furthermore, we thank Kristian Hildebrand and Chaitanya A. Athale (IISER Pune, India) and his lab for helpful discussions

Downloads last month
36