Datasets:
id
string | image
image | mask
images list |
|---|---|---|
irm_in_vitro_microtubules_0
| ||
irm_in_vitro_microtubules_1
| ||
irm_in_vitro_microtubules_2
| ||
irm_in_vitro_microtubules_3
| ||
irm_in_vitro_microtubules_4
| ||
irm_in_vitro_microtubules_5
| ||
irm_in_vitro_microtubules_6
| ||
irm_in_vitro_microtubules_7
| ||
irm_in_vitro_microtubules_8
| ||
irm_in_vitro_microtubules_9
| ||
irm_in_vitro_microtubules_10
| ||
irm_in_vitro_microtubules_11
| ||
irm_in_vitro_microtubules_12
| ||
irm_in_vitro_microtubules_13
| ||
irm_in_vitro_microtubules_14
| ||
irm_in_vitro_microtubules_15
| ||
irm_in_vitro_microtubules_16
| ||
irm_in_vitro_microtubules_17
| ||
irm_in_vitro_microtubules_18
| ||
irm_in_vitro_microtubules_19
| ||
irm_in_vitro_microtubules_20
| ||
irm_in_vitro_microtubules_21
| ||
irm_in_vitro_microtubules_22
| ||
irm_in_vitro_microtubules_23
| ||
irm_in_vitro_microtubules_24
| ||
irm_in_vitro_microtubules_25
| ||
irm_in_vitro_microtubules_26
| ||
irm_in_vitro_microtubules_27
| ||
irm_in_vitro_microtubules_28
| ||
irm_in_vitro_microtubules_29
| ||
irm_in_vitro_microtubules_30
| ||
irm_in_vitro_microtubules_31
| ||
irm_in_vitro_microtubules_32
| ||
irm_in_vitro_microtubules_33
|
HTW-KI-Werkstatt/IRM-in-vitro-microtubules
Real IRM Images of in vitro Microtubules
This dataset contains real interference reflection microscopy (IRM) images of in vitro microtubules. It is provided in the exact same format as the synthetic SynthMT dataset, enabling seamless switching between real and synthetic data for benchmarking and model development.
- Data type: Real in vitro IRM images containing microtubules
- Format: Identical structure and field names as SynthMT
- Use case: Benchmarking segmentation models, domain adaptation, and biological analysis
Biological Context
Microtubules are cytoskeletal filaments essential for cell biology. IRM enables label-free imaging of microtubules in vitro, providing high-contrast images for quantitative analysis.
Dataset Structure
Each sample contains:
| Field | Type | Description |
|---|---|---|
id |
string | Unique image identifier |
image |
Image | Real IRM image (PNG, can be loaded as (512, 512, 3)) |
mask |
Array3D | Instance masks, same as SynthMT, i.e., with shape (C, 512, 512) and uint16 dtype, where C = number of instances in the image. Background pixels = 0. |
The structure matches SynthMT, so you can switch the repo key in your code without changes.
Usage Example
Install the Hugging Face datasets library:
pip install datasets
Load the dataset (just change the repo key from SynthMT):
from datasets import load_dataset
import numpy as np
ds = load_dataset("HTW-KI-Werkstatt/IRM-in-vitro-microtubules", split="train")
sample = ds[0]
img_array = np.array(sample["image"].convert("RGB"))
mask_stack = np.stack([np.array(mask.convert("L")) for mask in sample["mask"]], axis=0)
Related Resources
- Synthetic Dataset (SynthMT): https://huggingface.co/datasets/HTW-KI-Werkstatt/SynthMT
- Project Page: https://datexis.github.io/SynthMT-project-page/
- Paper: https://www.biorxiv.org/content/10.64898/2026.01.09.698597v2
License
CC-BY-4.0
π Citation
If you use this dataset, please cite:
@article{koddenbrock2026synthetic,
author = {Koddenbrock, Mario and Westerhoff, Justus and Fachet, Dominik and Reber, Simone and Gers, Felix A. and Rodner, Erik},
title = {Synthetic data enables human-grade microtubule analysis with foundation models for segmentation},
elocation-id = {2026.01.09.698597},
year = {2026},
doi = {10.64898/2026.01.09.698597},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2026/01/12/2026.01.09.698597},
eprint = {https://www.biorxiv.org/content/early/2026/01/12/2026.01.09.698597.full.pdf},
journal = {bioRxiv}
}
π· License
CC-BY-4.0 - See LICENSE for details.
π Acknowledgements
Our work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 528483508 - FIP 12. We would like to thank Dominik Fachet and Gil Henkin from the Reber lab for providing data, and also thank the further study participants Moritz Becker, Nathaniel Boateng, and Miguel Aguilar. The Reber lab thanks staff at the Advanced Medical Bioimaging Core Facility (CharitΓ©, Berlin) for imaging support and the Max Planck Society for funding. Furthermore, we thank Kristian Hildebrand and Chaitanya A. Athale (IISER Pune, India) and his lab for helpful discussions
- Downloads last month
- 36