My research focuses on deep reasoning with small language models, Transformer architecture innovation, and knowledge distillation for efficient alignment and transfer.
We have successfully replaced the KV-cache bottleneck inherent in Softmax Attention with Causal Monoid State Compression. By defining the causal history as a monoid recurrence, , the entire prefix is lossily compressed into a fixed-size state matrix per head.
The technical core of this architecture relies on the associativity of the monoid operator:
Training: parallel prefix scan using Triton-accelerated JIT kernels to compute all prefix states simultaneously. Inference: True sequential updates. Memory and time complexity per token are decoupled from sequence length. Explicit Causality: We discard RoPE and attention masks. Causality is a first-class citizen, explicitly modeled through learned, content-dependent decay gates.
Current zero-shot benchmarks demonstrate that Spartacus-1B-Instruct (1.3B) is already outperforming established sub-quadratic models like Mamba-1.4B and RWKV-6-1.6B on ARC-Challenge (0.3063). Recent integration of structured Chain-of-Thought (CoT) data has further pushed reasoning accuracy to 75%.
The "Spartacus" era is about scaling intelligence, not the memory wall ♾️.
We have successfully replaced the KV-cache bottleneck inherent in Softmax Attention with Causal Monoid State Compression. By defining the causal history as a monoid recurrence, , the entire prefix is lossily compressed into a fixed-size state matrix per head.
The technical core of this architecture relies on the associativity of the monoid operator:
Training: parallel prefix scan using Triton-accelerated JIT kernels to compute all prefix states simultaneously. Inference: True sequential updates. Memory and time complexity per token are decoupled from sequence length. Explicit Causality: We discard RoPE and attention masks. Causality is a first-class citizen, explicitly modeled through learned, content-dependent decay gates.
Current zero-shot benchmarks demonstrate that Spartacus-1B-Instruct (1.3B) is already outperforming established sub-quadratic models like Mamba-1.4B and RWKV-6-1.6B on ARC-Challenge (0.3063). Recent integration of structured Chain-of-Thought (CoT) data has further pushed reasoning accuracy to 75%.
The "Spartacus" era is about scaling intelligence, not the memory wall ♾️.
In 2017, my RNNs were babbling. Today, they are hallucinating beautifully.
10 years ago, getting an LSTM to output coherent English was a struggle. 10 years later, after a "cure" based on FineWeb-EDU and a custom synthetic mix for causal conversation, the results are fascinating.
We trained this on ~10B tokens on a single AMD GPU (ROCm). It is not a Transformer: Echo-DSRN (400M) is a novel recurrent architecture inspired by Hymba, RWKV, and xLSTM, designed to challenge the "Attention is All You Need" monopoly on the Edge.
The ambitious goal is to build a small instruct model with RAG and tool usage capabilities (ethicalabs/Kurtis-EON1)
📊 The Benchmarks (Size: 400M)
For a model this size (trained on <10B tokens), the specialized performance is surprising:
*SciQ*: 73.8% 🦄 (This rivals billion-parameter models in pure fact retrieval). *PIQA*: 62.3% (Solid physical intuition for a sub-1B model).
The Reality Check:
HellaSwag (29.3%) and Winogrande (50.2%) show the limits of 400M parameters and 10B tokens training.
We are hitting the "Reasoning Wall" which confirms we need to scale to (hopefully) unlock deeper common sense. As you can see in the visualization (to be released soon on HF), the FineWeb-EDU bias is strong. The model is convinced it is in a classroom ("In this course, we explore...").
The Instruct Model is not ready yet and we are currently using curriculum learning to test model plasticity.
Source code and weights will not be released yet. This is not a fork or a fine-tune: the base model is built in-house at https://www.ethicalabs.ai/, with novel components that do not exist in current open libraries.
🤝 Call for Collaboration: I am looking for Peer Reviewers interested in recurrent/hybrid architectures. If you want to explore what lies beyond Transformers, let’s connect!
🚀 Wanna train your own AI Model or Tokenizer from scratch?
Building models isn’t just for big labs anymore — with the right data, compute, and workflow, you can create **custom AI models** and **tokenizers** tailored to any domain. Whether it’s NLP, domain‑specific datasets, or experimental architectures, training from scratch gives you full control over vocabulary, embeddings, and performance.
✨ Why train your own? - Full control over vocabulary & tokenization - Domain‑specific optimization (medical, legal, technical, etc.) - Better performance on niche datasets - Freedom to experiment with architectures
⚡ The best part? - Tokenizer training (TikToken / BPE) can be done in **just 3 lines of code**. - Model training runs smoothly on **Google Colab notebooks** — no expensive hardware required.