# fmt: off # Adaptation recipe lifted from Jonas et al. :> # https://github.com/seal-rg/recurrent-pretraining/blob/main/recpre/raven_modeling_minimal.py # coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Union import time import torch from torch import nn import torch.nn.functional as F from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.integrations import use_kernel_forward_from_hub from transformers.masking_utils import create_causal_mask from transformers.modeling_layers import ( GenericForQuestionAnswering, GenericForSequenceClassification, GenericForTokenClassification, GradientCheckpointingLayer, ) from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from transformers.utils.deprecation import deprecate_kwarg from transformers.utils.generic import check_model_inputs from .configuration_llama import LlamaConfig # Glue from transformers.generation.utils import GenerateDecoderOnlyOutput logger = logging.get_logger(__name__) @use_kernel_forward_from_hub("RMSNorm") class LlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ LlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class LlamaRotaryEmbedding(nn.Module): inv_freq: torch.Tensor # fix linting for `register_buffer` def __init__(self, config: LlamaConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class LlamaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class LlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: LlamaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_values is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class LlamaDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: LlamaConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx) self.mlp = LlamaMLP(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> torch.Tensor: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states @auto_docstring class LlamaPreTrainedModel(PreTrainedModel): config: LlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlamaDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": LlamaDecoderLayer, "attentions": LlamaAttention, } @auto_docstring class LlamaModel(LlamaPreTrainedModel): def __init__(self, config: LlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @check_model_inputs() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds: torch.Tensor = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position: torch.Tensor = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) @auto_docstring class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() print(f"Loading local LlamaForCausalLM!") @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @torch.inference_mode() def generate(self, input_ids: Optional[torch.LongTensor] = None, *args, **kwargs): """ Custom generate entry point. If `do_mtp=True` is passed, strictly enforces MTP-only arguments and routes to `_mtp_generate`. Otherwise, routes to standard Hugging Face `generate`. """ # 1. Standard Path if not kwargs.get("do_mtp", False): print("Executing standard generate() codepath.") return super().generate(input_ids, *args, **kwargs) # 2. MTP Path print("Executing custom MTP generation codepath!") # Handle input_ids: HF can pass it as positional (first arg) or keyword # We consolidate it into 'prompt' for the MTP signature prompt = input_ids if input_ids is not None else kwargs.pop("input_ids", None) if prompt is None: # If standard generate was called without input_ids, it might be in *args or handled deeper, # but for MTP we require it explicitly. raise ValueError("MTP generation requires 'input_ids' to be passed.") # --- Argument Extraction & Strict Validation --- # Keys strictly allowed for MTP (will be passed to _mtp_generate) mtp_allowed_keys = { "do_mtp", "k_toks", "mask_id", "strategy", "return_mtp_result_dict", "include_prompt", "streamer" } # Keys from HF that we know how to map to MTP equivalents # max_length -> max_returned_tokens max_length = kwargs.pop("max_length", None) max_returned_tokens = kwargs.pop("max_returned_tokens", None) if max_returned_tokens is None and max_length is not None: print(f"Renaming max_length={max_length} to max_returned_tokens for MTP generation.") max_returned_tokens = max_length # eos_token_id -> eos_id eos_token_id = kwargs.pop("eos_token_id", None) eos_id = kwargs.pop("eos_id", None) if eos_id is None: eos_id = eos_token_id # Standard HF args that we SILENTLY IGNORE because they are passed automatically # by the GenerationMixin but are not relevant or supported in this MTP implementation. ignored_hf_keys = { "attention_mask", "use_cache", "do_sample", "stopping_criteria", "pad_token_id", "logits_processor", "max_new_tokens", "generation_config", } # Check for explicit incompatibility if kwargs.get("do_sample", False): raise ValueError("MTP generation does not support sampling (do_sample=True).") # Extract valid MTP args mtp_kwargs = {} for k in list(kwargs.keys()): if k in mtp_allowed_keys: mtp_kwargs[k] = kwargs.pop(k) # Remove ignored HF keys for k in list(kwargs.keys()): if k in ignored_hf_keys: kwargs.pop(k) # FAIL LOUDLY if anything is left in kwargs if kwargs: raise ValueError( f"Unsupported argument(s) passed to MTP generate: {list(kwargs.keys())}.\n" f"When do_mtp=True, only these args are supported: {list(mtp_allowed_keys) + ['max_returned_tokens', 'eos_id']}." ) # Pre-flight checks if len(prompt.shape) > 1 and prompt.shape[0] > 1: raise NotImplementedError("MTP generation currently only supports single-example generation (no batching).") # Execute Unified Implementation # Note: We remove 'do_mtp' from kwargs before passing, as the impl doesn't need it mtp_kwargs.pop("do_mtp", None) return self._mtp_generate( prompt=prompt, max_returned_tokens=max_returned_tokens, eos_id=eos_id, **mtp_kwargs ) @torch.inference_mode() def _mtp_generate( self, prompt: torch.Tensor, max_returned_tokens: int = None, k_toks: int = 1, mask_id: int = None, eos_id: Optional[Union[int, list]] = None, include_prompt: bool = True, streamer = None, strategy: Optional[list] = None, return_mtp_result_dict: bool = False, ): """ Implementation of MTP generation logic. """ # --- Setup Stop Tokens --- if isinstance(eos_id, int): stop_tokens = ([eos_id,],) elif isinstance(eos_id, list): assert all(isinstance(eid, int) for eid in eos_id), "If eos_id is a list, all elements must be ints." stop_tokens = tuple([list([eid,]) for eid in eos_id]) elif eos_id is None: stop_tokens = () else: raise ValueError(f"eos_id must be None, int, or list of lists, got {type(eos_id)}") # --- Validation --- if k_toks > 1: assert mask_id is not None, "mask_id must be provided when k_toks > 1" input_ids = prompt.clone() prompt_size = prompt.size(1) device = prompt.device # Get generation config (defaulting to model's if not present) generation_config = self.generation_config # --- Streaming Prompt --- if include_prompt: if streamer is not None: print(f"\n", flush=True) streamer.put(input_ids) print(f"\n", flush=True) if streamer is not None: print(f"\n", flush=True) stop_progress = [0] * len(stop_tokens) # --- Generation Loop --- t0_prefill = time.perf_counter() t1_prefill = None t0_gen = None t1_gen = None toks_pre_prefill = input_ids.shape[1] toks_post_prefill = None current_idx = input_ids.shape[1] num_fwd_evals = 0 effective_k_values = [] # Prepare kwargs for the inner loop model_kwargs = {} while current_idx + k_toks <= max_returned_tokens: # 0 is prefill, 1 is first step which can include compile time, then 2 is steady state if (t0_gen is None and num_fwd_evals == 2): t1_prefill = time.perf_counter() t0_gen = time.perf_counter() toks_post_prefill = input_ids.shape[1] # Generate the token if k_toks > 1: input_ids = self._extend_w_mask(input_ids=input_ids, k_toks=k_toks, mask_id=mask_id) # first step prep if num_fwd_evals == 0: model_kwargs, generation_config = self._prep_generate_args( self, input_ids, generation_config, ) assert "token_type_ids" not in model_kwargs assert "attention_mask" not in model_kwargs assert "decoder_attention_mask" not in model_kwargs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) next_tokens, model_outputs = self._mtp_next_tokens( self, model_inputs, k_toks=k_toks, strategy=strategy, ) effective_k_values.append(next_tokens.shape[1]) if streamer is not None: streamer.put(next_tokens) # remove the masks if any if k_toks > 1: input_ids = input_ids[:, :-(k_toks - 1)] input_ids = torch.cat([input_ids, next_tokens], dim=-1) # Update cache / model kwargs model_kwargs["past_key_values"] = model_outputs.past_key_values if strategy is None: if num_fwd_evals == 0: # this is the end of the prefill step if k_toks > 1: model_kwargs["cache_position"] = torch.arange( prompt_size, prompt_size + k_toks + (k_toks - 1), device=device, dtype=torch.int64, ) else: model_kwargs["cache_position"] = torch.tensor( [prompt_size], device=device, dtype=torch.int64 ) else: model_kwargs["cache_position"].add_(k_toks) else: # we can assume that all strats produce variable number of tokens num_new_tokens = next_tokens.shape[1] if num_fwd_evals == 0: # this is the end of the prefill step if k_toks > 1: model_kwargs["cache_position"] = torch.arange( prompt_size, prompt_size + num_new_tokens + (k_toks - 1), device=device, dtype=torch.int64, ) else: model_kwargs["cache_position"] = torch.tensor( [prompt_size], device=device, dtype=torch.int64 ) else: if k_toks > 1: recomputation_positions = model_kwargs["cache_position"][: -(k_toks - 1)] previous_num_new_tokens = recomputation_positions.size(0) new_start_pos = recomputation_positions[0] + previous_num_new_tokens model_kwargs["cache_position"] = torch.arange( new_start_pos, new_start_pos + num_new_tokens + (k_toks - 1), device=device, dtype=torch.int64, ) else: model_kwargs["cache_position"].add_(1) current_idx += next_tokens.shape[1] num_fwd_evals += 1 # Crop cache model_kwargs["past_key_values"].crop(model_kwargs["cache_position"][0]) # Check for stop sequences hit_stop_seq = False for int_tok in next_tokens.tolist()[0]: # assuming batch size 1 for i, seq in enumerate(stop_tokens): if int_tok == seq[stop_progress[i]]: stop_progress[i] += 1 if stop_progress[i] == len(seq): hit_stop_seq = True break else: stop_progress[i] = 0 if hit_stop_seq: break if hit_stop_seq: break # End of generation loop if streamer is not None: streamer.end() print(f"\n", flush=True) t1_gen = time.perf_counter() # Calculate stats if t1_prefill is not None and t0_gen is not None and toks_post_prefill is not None: t_prefill = t1_prefill - t0_prefill t_gen = t1_gen - t0_gen tokens_generated = input_ids.shape[1] - toks_post_prefill toks_gend_incl_prefillplus1 = input_ids.shape[1] - toks_pre_prefill else: t_prefill = t1_gen - t0_prefill t_gen = t1_gen - t0_prefill tokens_generated = input_ids.shape[1] - toks_pre_prefill toks_gend_incl_prefillplus1 = input_ids.shape[1] - toks_pre_prefill print( f"Using a total of {f'1+1+{num_fwd_evals-2}' if t0_gen is not None else f'{num_fwd_evals}'} forward evals, time for prefill plus first/compilation step {f'(1+1)' if t0_gen is not None else ''} was {t_prefill:.02f} sec, generation time was {t_gen:.02f} sec @ {tokens_generated / t_gen:.02f} tokens/sec {f'steady state' if t0_gen is not None else ''} over {tokens_generated} tokens.", flush=True, ) print(f"Strategy used: {strategy}", flush=True) avg_effective_k = sum(effective_k_values) / len(effective_k_values) if effective_k_values else 0 print( f"Average effective k_toks over generation: {avg_effective_k:.02f}, full array of effective k_toks: {effective_k_values}", flush=True, ) if generation_config.return_dict_in_generate: raise NotImplementedError(f"Only basic return type implemented for MTP generate.") if return_mtp_result_dict: token_ids = input_ids if include_prompt else input_ids[:,prompt_size:] # testing for generation vs. aux data order integrity import hashlib leading_toks = token_ids[0,prompt_size:prompt_size+10].tolist() leading_toks_hash = hashlib.shake_128(str(leading_toks).encode()).hexdigest(4) mtp_result_dict = { "token_ids":token_ids, "leading_toks_hash": leading_toks_hash, "num_fwd_evals": num_fwd_evals, "t_prefill": t_prefill, "t_gen": t_gen, "tokens_generated": tokens_generated, "toks_gend_incl_prefillplus1": toks_gend_incl_prefillplus1, "avg_effective_k": avg_effective_k, "effective_k_values": effective_k_values, "tps": tokens_generated / t_gen if t_gen > 0 else 0.0, } return mtp_result_dict return input_ids if include_prompt else input_ids[:,prompt_size:] @torch.inference_mode() def _prep_generate_args( self, model, input_ids: torch.Tensor, generation_config = None, model_kwargs: dict = None, ): # Setup if model_kwargs is None: model_kwargs = {} if generation_config is None: generation_config = model.generation_config model_kwargs["use_cache"] = True if "past_key_values" in model_kwargs: print(f"Before _get_initial_cache_position past_key_values cache length: {model_kwargs['past_key_values'].layers[0].get_seq_length()}", flush=True) model_kwargs = model._get_initial_cache_position(input_ids.shape[1], input_ids.device, model_kwargs) if "past_key_values" in model_kwargs: print(f"After _get_initial_cache_position past_key_values cache length: {model_kwargs['past_key_values'].layers[0].get_seq_length()}", flush=True) return model_kwargs, generation_config @torch.inference_mode() def _top1_confidence( self, logits: torch.Tensor = None ): probs = F.softmax(logits, dim=-1) # LxV top1_idx = torch.argmax(probs, dim=-1) # Lx1 top1_confs = probs[torch.arange(probs.shape[0], device=probs.device), top1_idx] # Lx1 return top1_confs @torch.inference_mode() def _extend_w_mask( self, input_ids=None, k_toks=None, mask_id=None ): bsz, _ = input_ids.shape if k_toks - 1 > 0: mask_tensor = ( torch.ones((bsz, k_toks - 1), dtype=torch.int64, device=input_ids.device) * mask_id ) return torch.cat([input_ids, mask_tensor], dim=-1) return input_ids @torch.inference_mode() def _mtp_next_tokens( self, model, model_inputs, k_toks: int = 1, strategy: Optional[list] = None, ) -> torch.Tensor: outputs = model(**model_inputs) # logits = outputs.logits[:, -k_toks:, :] logits = outputs.logits[0, -k_toks:, :] if strategy is None: _next = torch.argmax(logits, dim=-1, keepdim=False) elif strategy[0] == "conf_adapt" or strategy[0] == "conf_adapt_sample@1": # we compute the position wise confidences using the _top1_confidence function top1_conf = self._top1_confidence(logits) # print(f"top1_conf: {top1_conf}", flush=True) # now we compute the position of the farthest token geq the threshold # but contiguously, so if we have [0.95, 0.92, 0.85, 0.97] and threshold 0.9 # we want to get position 1 not 3, since position 2 is below the threshold # also being careful of situation like [0.85, 0.88, 0.95] where nothing meets the threshold # falling back to the first token in that case threshold = strategy[1] lt_thresh_mask = top1_conf < threshold # now we find the first case where the mask is true, and go back one position if torch.all(~lt_thresh_mask): # then all positions are above the threshold, we take the last position last_pos = k_toks - 1 else: last_pos = torch.argmax(lt_thresh_mask.int()).item() - 1 if last_pos < 0: last_pos = 0 # print(f"last_pos: {last_pos}", flush=True) # then we slice the logits to only keep up to that position logits = logits[: last_pos + 1] if last_pos == 0 and strategy[0] == "conf_adapt_sample@1": # if k is 1 this step, then draw from the distribution probs = torch.softmax(logits, dim=-1) # print(f"Sampling from probs at k={logits.size(0)}: {probs.shape}", flush=True) temperature = strategy[2] if 0.0 < temperature < 1.0: probs = probs.pow(1.0 / temperature) probs = probs / probs.sum(dim=-1, keepdim=True) else: print(f"Using temperature={temperature} has no effect.", flush=True) _next = torch.multinomial(probs, num_samples=1).squeeze(0) else: _next = torch.argmax(logits, dim=-1, keepdim=False) elif strategy[0] == "random": sampling_weights = strategy[1] # we sample k for this step according to the provided weights k_toks = int( torch.multinomial(torch.tensor(sampling_weights), num_samples=1).item() ) logits = logits[: k_toks + 1] _next = torch.argmax(logits, dim=-1, keepdim=False) else: raise ValueError(f"Unknown strategy: {strategy}") _next = _next.unsqueeze(0) # add batch dim back return _next, outputs class LlamaForSequenceClassification(GenericForSequenceClassification, LlamaPreTrainedModel): ... class LlamaForQuestionAnswering(GenericForQuestionAnswering, LlamaPreTrainedModel): base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model` class LlamaForTokenClassification(GenericForTokenClassification, LlamaPreTrainedModel): ... #################################### HF registration ############################################################ from transformers import AutoConfig, AutoModel, AutoModelForCausalLM LlamaConfig.register_for_auto_class() LlamaForCausalLM.register_for_auto_class("AutoModel") LlamaForCausalLM.register_for_auto_class("AutoModelForCausalLM") __all__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", "LlamaForQuestionAnswering", "LlamaForTokenClassification", ]